- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Chevrel, M O (2)
-
Kolzenburg, S (2)
-
Latchimy, T (2)
-
Batier, L (1)
-
Delpoux, R (1)
-
Harris, M (1)
-
Harris, M A (1)
-
Höskuldsson, A (1)
-
Moreland, W M (1)
-
Parsons, J T (1)
-
Payet–Clerc, M (1)
-
Thordarson, T (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Viscosity is a fundamental physical property that controls lava flow dynamics, runout distance, and velocity, which are critical factors in assessing and mitigating risks associated with effusive eruptions. Natural lava viscosity is driven by a dynamic interplay among melt, crystals, and bubbles in response to the emplacement conditions. These conditions are challenging to replicate in laboratory experiments, yet this remains the most common method for quantifying lava rheology. Few in situ viscosity measurements exist, but none of those constrains the spatial evolution of viscosity along an entire active lava flow field. Here, we present the first real-time, in situ viscosity map of active lava as measured in the field at Litli-Hrútur, Iceland. We precisely measured a lava viscosity increase of over two orders of magnitude, associated with a temperature decrease, crystallinity increase, and vesicularity decrease from near-vent to distal locations, crossing the pāhoehoe–‘a‘ā transition. Our data expand the limited database of three-phase lava viscosity, which is crucial for improvements and validation of the current numerical, experimental, and petrological approaches used to estimate lava viscosity. Further, this study showcases that field viscometry provides a rapid, accurate, and precise assessment of lava viscosity that can be implemented in eruptive response modeling of lava transport.more » « lessFree, publicly-accessible full text available November 20, 2025
-
Chevrel, M O; Latchimy, T; Batier, L; Delpoux, R; Harris, M; Kolzenburg, S (, Review of Scientific Instruments)Mounted on top of furnaces, laboratory viscometers can be used for the rheological characterization of high temperature melts, such as molten rocks (lava). However, there are no instruments capable of measuring the viscosity of large volumes of high temperature melts outside the laboratory at, for example, active lava flows on volcanoes or at industrial sites. In this article, we describe a new instrument designed to be easy to operate, highly mobile, and capable of measuring the viscosity of high temperature liquids and suspensions (<1350 °C). The device consists of a torque sensor mounted in line with a stainless-steel shear vane that is immersed in the melt and driven by a motor that rotates the shear vane. In addition, a thermocouple placed between the blades of the shear vane measures the temperature of the melt at the measurement location. An onboard microcomputer records torque, rotation rate, and temperature simultaneously and in real time, thus enabling the characterization of the rheological flow curve of the material as a function of temperature and strain rate. The instrument is calibrated using viscosity standards at low temperatures (20–60 °C) and over a wide range of stress (30–3870 Pa), strain rate (0.1–27.9 s−1), and viscosity (10–650 Pa s). High temperature tests were performed in large scale experiments within ∼25 l of lava at temperatures between 1000 and 1350 °C to validate the system’s performance for future use in natural lava flows. This portable field viscometer was primarily designed to measure the viscosity of geological melts at their relevant temperatures and in their natural state on the flanks of volcanoes, but it could also be used for industrial purposes and beyond.more » « less
An official website of the United States government
